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Abstract

Reports of methamphetamine-related emergency room visits suggest that elevated body 

temperature is a universal presenting symptom, with lethal overdoses generally associated with 

extreme hyperthermia. This review summarizes the available information on methamphetamine 

toxicity as it pertains to elevations in body temperature. First, a brief overview of 

thermoregulatory mechanisms is presented. Next, central and peripheral targets that have been 

considered for potential involvement in methamphetamine hyperthermia are discussed. Finally, 

future areas of investigation are proposed, as further studies are needed to provide greater insight 

into the mechanisms that mediate the alterations in body temperature elicited by 

methamphetamine.
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1. Introduction

A number of excellent reviews are available outlining the health and societal concerns 

stemming from methamphetamine (METH) abuse and overdose (Davidson et al., 2001; 

Cruickshank & Dyer, 2009; Krasnova & Cadet, 2009; Clark et al., 2012; Marshall & O’Dell, 

2012), yet there remains a paucity of information related to the hyperthermic effects of 

METH. In the United States, METH use is responsible for an estimated 94,000 emergency 

department admissions annually (NIDA, 2011), with elevated body temperature appearing 

as a universal presenting symptom. METH-induced hyperthermia puts individuals at risk for 

death and there are few treatment options (Greenblatt & Osterberg, 1961; Schep et al., 

2010). Consequently, this review focuses on METH hyperthermia. It covers what is known 

about the effects of METH on body temperature as well as providing a review of the 

literature on previously tested hypotheses concerning METH hyperthermia and the 

outcomes of these studies. Finally, the review suggests directions for future research.

2. Temperature regulation

The regulation of body temperature requires a coordinated effort between central and 

peripheral mechanisms, with the balance of heat retention and dissipation representing key 

components of the process. Since pathophysiology results from the disruption of normal 

physiological functions, understanding how METH may dysregulate body temperature to 

cause hyperthermia requires a better understanding of how normal temperature regulation 

occurs, a topic which is briefly reviewed herein. Normal heat loss mechanisms, such as 

those triggered in response to high ambient temperatures, include: 1) radiation, 2) 

conduction, 3) convection, and 4) evaporation (Docherty & Green, 2010). The first three 

processes involve the passive transfer of heat and energy from the body to the colder 

surrounding environment, while evaporation is an active process that occurs primarily in the 

form of sweating (or panting in animals).

Normal heat generating mechanisms, such as those triggered in response to cold 

environments, include: 1) increased metabolic activity of tissues (e.g., increased tissue 

oxidation), 2) increased muscle activity (e.g., through shivering, exercise), and 3) 

nonshivering thermogenesis (e.g., through increased lipid and carbohydrate metabolism, 

brown adipose tissue) (Cannon & Nedergaard, 2004; Docherty & Green, 2010; Morrison & 

Nakamura, 2011). Additional heat retention strategies include: 1) vasoconstriction (to 

minimize heat loss by radiation), and 2) insulation (through fat under the skin, piloerection 

in animals with fur) (Docherty & Green, 2010; Morrison & Nakamura, 2011).
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2.1. Anatomy of temperature regulation

Physiological responses used to maintain body temperature are regulated by an integration 

of central nervous system (CNS) and systemic events, with coordination of these processes 

primarily controlled in the hypothalamus (Morrison & Nakamura, 2011). Heat and cold are 

detected by temperature sensors in the body, which are located in both the periphery and 

CNS. The peripheral sensors are found in the skin and utilize transient receptor potential 

(TRP) channels on primary sensory afferents to relay information to the CNS, and ultimately 

the hypothalamus (Morrison & Nakamura, 2011). Once this information reaches the 

hypothalamus, warm-sensitive neurons in the anterior preoptic area respond to changes in 

temperature, which are sensed locally in the tissue (Nakayama et al., 1961).

Neurons in the preoptic area of the hypothalamus have synaptic contacts that: 1) activate 

parasympathetic neurons in the anterior hypothalamus, and 2) inhibit sympathetic neurons in 

the posterior hypothalamus. Thus, when an increase in temperature is sensed, vasodilation 

and sweating result due to parasympathetic stimulation and removal of sympathetic tone to 

blood vessels in the skin (Charkoudian, 2003; Rusyniak & Sprague, 2006). Other 

physiological responses that occur in an effort to dissipate heat include decreased metabolic 

and muscle activity (Webb, 1995).

Although the hypothalamus is recognized as the thermoregulatory center that coordinates the 

information coming in from the periphery via the primary sensory afferents with the out-

going responses to the autonomic nervous system, other intervening brain regions may also 

participate in this coordinated response. These regions include the lateral parabrachial 

nucleus and the rostral ventromedial medulla (Morrison & Nakamura, 2011).

2.2. Neurochemistry of temperature regulation

The major neurotransmitters involved in thermoregulation are: glutamate (afferents to the 

hypothalamus and some efferents), γ-aminobutyric acid (GABA; efferents from the 

hypothalamus), serotonin (brainstem neurons), norepinephrine and acetylcholine (autonomic 

neurons) (Morrison & Nakamura, 2011). In addition, a number of peptides, hormones, and 

cytokines can modulate body temperature (Morrison & Nakamura, 2011). The sources of 

these bioactive molecules are varied and include neurons, glia, myocytes (cardiac and 

skeletal muscle), endothelial cells, and blood cells (Kiyatkin & Sharma, 2009).

2.3. Body mass scaling

A major challenge for research on hyperthermia and thermoregulatory processes is 

appropriate extrapolation of data from studies in animals to humans (Gordon, 2007). Most 

studies involving the hyperthermic effect of METH have been conducted in rodents, with 

issues related to body mass scaling being of particular concern. The vasomotor index, which 

quantifies the extent to which an animal can regulate its surface temperature, is positively 

correlated with body mass (Phillips & Heath, 1995). Smaller animals, such as rodents, have 

a large surface area:volume ratio compared to humans, and use different strategies to 

regulate surface temperature. Small animals rely on passive heat dissipation and alterations 

in metabolic rate to achieve control, whereas large animals, such as humans, have smaller 

surface area:volume available for heat exchange and depend on sweating and peripheral 
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vasomotor mechanisms to regulate this process, rather than alterations in metabolic rate 

(Gordon, 2007). A major consequence of these differences is that rodents, with their small 

size relative to humans, are more vulnerable to fluctuations in ambient temperature than 

humans.

3. METH and temperature regulation

METH acts as an indirect agonist that can cause the release of monoamines and inhibit their 

reuptake in both the CNS and periphery (Davidson et al., 2001; Krasnova & Cadet, 2009; 

Schep et al., 2010). At lower, stimulant doses, METH does not have significant effects on 

body temperature, but can produce lethal hyperthermia upon exposure to high doses 

(Albertson et al., 1999; Krasnova & Cadet, 2009). Information on general thermoregulatory 

mechanisms that are affected by METH are summarized, followed by an overview of 

environmental factors and disease states that can modulate the effect of METH on body 

temperature.

3.1. Body temperature dysregulation by METH

The mechanisms through which METH affects body temperature include both central and 

peripheral targets (Fig. 1). In general, METH increases body temperature by promoting heat 

generation and retention, and suppressing responses that would facilitate heat dissipation 

(Table 1). It should be noted that these effects can vary greatly by species (e.g., rats vs. 

mice).

As a psychomotor stimulant, METH causes increased activation of and metabolism in the 

CNS and skeletal muscles (Estler, 1975; Makisumi et al., 1998), which may elevate brain 

and body temperature. In addition, METH causes vasoconstriction (Gordon et al., 1991; 

Turnipseed et al., 2003; Watts & McCollester, 2006; Haning & Goebert, 2007), which can 

contribute to the ensuing hyperthermia by preventing heat dissipation in the periphery. In 

laboratory animals, piloerection may also indicate that heat dissipation mechanisms have 

become compromised and/or heat retention mechanisms are activated by METH, although it 

should be cautioned that serotonin release can cause piloerection unrelated to body 

temperature (Gordon, 1983, 2005). These heat generating processes more often than not 

overwhelm some efforts by METH-treated laboratory animals to dissipate heat, including 

pronounced drooling and saliva spreading (Morrison & Nakamura, 2011).

3.2. Modulators of thermoregulation and METH hyperthermia

A number of environmental factors and disease states can affect temperature regulation, with 

the ones most relevant to the conditions under which METH exposure may occur 

summarized here. Primary amongst them is ambient temperature, where increasing or 

decreasing environmental temperature can greatly enhance or reduce METH’s effects on 

body temperature, respectively (Bowyer et al., 1992, 1994). In METH-treated animals, 

elevations in brain temperature have also been reported at increased ambient temperatures 

(Brown & Kiyatkin, 2005; Kiyatkin & Sharma, 2011, 2012). In humans, prolonged exposure 

to excessive environmental temperatures can cause hyperthermia and death, with 65% of 

heat-related deaths resulting from exposure to excessive heat (CDC, 2006); this clinical 
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condition would be expected to be greatly exaggerated with co-exposure to METH, as has 

been shown to be the case for 3,4-methylenedioxymethamphetamine (MDMA) (Green et al., 

2004; Kiyatkin & Sharma, 2012). In contrast, cold environments can prevent METH-

induced hyperthermia and attenuate resulting METH-induced increases in oxidation 

products and neurotoxicity (Bowyer et al., 1994; LaVoie & Hastings, 1999; also see below).

Social interaction can also affect body temperature. Earlier studies have reported increases 

in body and brain temperature following exposure to conspecifics (Kiyatkin et al., 2002). 

Many studies have shown that exposure of animals to METH when group housed greatly 

enhances the toxicity and lethality of the drug, a phenomenon also known as “aggregate 

toxicity” (Greenblatt & Osterberg, 1961). The changes in body temperature may be 

secondary to arousal-induced neuronal activation since alterations in brain temperature 

precede and exceed those measured in the body, including head muscles adjacent to the skull 

(Brown et al., 2003). However, an alternate explanation could relate to the higher energy 

demands of the brain compared to other tissues, which would be expected to generate heat 

(Kiyatkin, 2007). Regardless of the underlying mechanisms of the aforementioned, 

hyperthermia resulting from social interactions has been reported to enhance the toxicity 

produced by METH by increasing the duration of the hyperthermia (Brown et al., 2003).

Exercise can also elevate body temperature, by increasing cardiac and skeletal muscle 

activity (Wendt et al., 2007). In humans, brain and body core temperature rise in parallel in 

response to exercise (Nybo, 2012). Further increases in body temperature that occur in 

association with METH can thus exacerbate exercise-induced heat stress on the body. These 

observations have practical relevance as well in situations where the amphetamines are used 

clinically. Children and adults with attention deficit hyperactivity disorder (ADHD) are 

treated with a mixture of amphetamine salts (e.g., Adderall) and may therefore be prone to 

more difficulty in extreme temperature situations (e.g., participating in sports during the hot 

summer months).

Stressor exposures in combination with METH can also modulate body temperature in rats 

and mice. For example, unpredictable stress in rats enhances the hyperthermia produced by 

METH (Tata et al., 2007). METH-induced extracellular dopamine concentration in stressed 

vs. unstressed rats does not differ significantly, suggesting the contribution of non-

dopaminergic systems in these effects (Tata et al., 2007). In contrast, serotonergic function 

appears important because the enhancement of METH-induced hyperthermia by stress can 

be prevented by the 5-HT2 antagonist ketanserin (Doyle & Yamamoto, 2010). This is 

consistent with the well-established up-regulation of 5-HT2 receptor expression induced by 

various forms of stress (Davis et al., 1995; Takao et al., 1995; Ossowska et al., 2001; 

Matuszewich & Yamamoto, 2003). This stress-induced alteration would be expected to 

enhance the hyperthermic effects mediated through METH-induced release of serotonin 

(Doyle & Yamamoto, 2010). In contrast to these data obtained in rats, mice exposed to 

restraint stress in combination with METH show markedly decreased body temperature and 

resistance to METH-induced dopaminergic neurotoxicity (Miller & O’Callaghan, 1994).

In addition to the aforementioned environmental factors, a number of disease states have 

been documented to increase the risk of developing hyperthermia. These include: 
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cardiovascular disease (e.g., chronic ischemic heart disease); endocrine, nutritional, and 

metabolic disorders (e.g., diabetes); infection and psychiatric disorders (CDC, 2006). The 

extent to which they may be extrapolated to METH-induced hyperthermia remains under 

investigation.

All of these factors are important to keep in mind because METH hyperthermia in humans 

generally involves an interaction between exposure to the drug and one or more of these 

exacerbating factors.

4. Clinical pharmacology and considerations related to METH hyperthermia

An overview of the pharmacokinetics of METH that are relevant for understanding its 

effects on body temperature are reviewed. In addition, the clinical management of METH 

hyperthermia is presented, along with select clinical consequences that can result from the 

hyperthermic effects of METH.

4.1. Pharmacokinetic parameters of METH

As dose to target is an important component of toxicity, the pharmacokinetics of METH are 

important to understand because different routes of administration can affect the amount of 

METH getting to the target, thereby affecting the magnitude of effects and their duration of 

action. METH is used through four primary routes of administration: 1) intravenous, 2) 

smoking, 3) oral, and 4) intranasal. Route of use dictates bioavailability, with studies 

demonstrating oral administration resulting in the lowest (67%) and intravenous 

administration resulting in the highest (100%) absorption (Schep et al., 2010). Intranasal 

(79%) and smoking (67–90%), depending on technique utilized, fall in between in 

bioavailability (Cruickshank & Dyer, 2009). Route of administration also affects the time to 

peak effect. For example, in preclinical studies in rhesus macaques, a similar peak 

temperature, but delayed onset is observed when METH is administered orally compared to 

intraperitoneally (Crean et al., 2006, 2007). In humans, intravenous and intranasal dosing 

results in peak effects within 15 minutes, while smoking has a slightly longer time-to-peak 

of 18 minutes and lastly, oral uptake results after a significant delay of approximately 3 

hours (Cruickshank & Dyer, 2009). Alternative routes of administration, for which little to 

no pharmacokinetic data exist, have emerged in recent years and require further 

investigation to elucidate drug uptake. These include body stuffing in which poorly 

packaged drugs are ingested, usually in an attempt to avoid prosecution by the police; 

‘parachuting’ in which the drug is placed into a plastic bag with the seal removed, rolled 

tightly, and swallowed, theoretically releasing the drug over a prolonged period; and 

‘shelving’, also known as intravaginal stuffing (Hendrickson et al., 2006; Kashani & Ruha, 

2004; West et al., 2010). Although administration routes of METH that lead to greater 

bioavailability would be expected to result in increased hyperthermia in clinical situations, it 

is currently unclear if maximum increases in METH-induced hyperthermia are specifically 

related to peak plasma concentration, or if increases in body temperature are more related to 

cumulative exposure.

The metabolism of METH occurs primarily in the liver through three main processes: 1) N-

demethylation via cytochrome P450 2D6, 2) aromatic hydroxylation through cytochrome 
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P450 2D6, and 3) β-hydroxylation, producing amphetamine, 4-hydroxymethamphetamine, 

and norephedrine, respectively (Schep et al., 2010). Some of these metabolites may 

contribute to sustained hyperthermic effects of METH, with amphetamine reported to 

produce elevations in body temperature on its own (Levi et al., 2012).

4.2. Treatment of METH hyperthermia

The major presenting symptom in emergency rooms involving a METH overdose is extreme 

hyperthermia that can be lethal if left untreated (Bowyer et al., 1984; Ito et al., 2008). Other 

presenting symptoms commonly observed, particularly in high-dose patients, include 

hypertension, tachycardia, dyspnea, and chest pain, with other features including increased 

agitation, altered mental status, pupil dilation, shivering, and possible seizure activity 

(Albertson et al., 1999). Medical interventions focus on strategies to minimize the 

bioavailability of METH and symptomatic management.

The clinical diagnosis of hyperthermia occurs when the core body temperature exceeds 40° 

C, at which point normal thermoregulatory mechanisms fail and the body is no longer 

capable of effectively dissipating heat (Bynum et al., 1978). Currently, no approved 

pharmacotherapy is available for treating the hyperthermic effects of METH. Administration 

of ammonium chloride or activated charcoal can assist in resolving METH-induced 

hyperthermia by increasing the excretion of METH from the body through acidification of 

the urine or prevention of the absorption of orally ingested METH, respectively (Suchard, 

2007). Cooling, which can be accomplished using either external or internal means, 

however, remains the primary method for the clinical treatment of hyperthermia. External 

cooling measures can include cool water submersion, misting accompanied by fans, or 

hypothermia blankets (Eyer & Zilker, 2007; Suchard, 2007). Medical providers must remain 

vigilant that skin cooling is not performed too quickly as rapid skin cooling produces 

shivering and vasoconstriction, which would minimize therapeutic benefit. Endovascular 

cooling, in which the temperature of the patient’s blood is lowered via a cooling catheter, 

while not generally deemed necessary, is capable of inducing rapid cooling while reducing 

the impact of shivering and vasoconstriction (Eyer & Zilker, 2007). While these methods 

have been shown to be beneficial in the treatment of hyperthermia for other disease states, 

currently it is unknown if these treatments result in better patient outcomes during METH 

overdose situations and no clear prospective studies have been conducted to determine their 

effectiveness.

4.3. Clinical consequences of METH hyperthermia

Hyperthermia can promote rhabdomyolysis, multi-organ failure, release of excitotoxic 

neurotransmitters, increased reactive oxygen species production, and heightened breakdown 

of cytoskeletal proteins (Eyer & Zilker, 2007; West et al., 2010). Hyperthermia elicited by 

METH per se has been implicated in a number of these effects and are reviewed below.

One of the major organs especially sensitive to the hyperthermic effects of METH is the 

liver. An early analysis on the clinical presentations of acute METH toxic reactions reported 

hepatitis as the second most common presenting complaint (Smith & Fischer, 1970); and 

more recently, a clinical report showed acute liver damage can occur following METH use 
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even in patients without viral hepatitis (Kamijo et al., 2002). In a rat model of binge METH 

exposure, further supporting that METH alone does cause acute liver damage, aspartate 

aminotransferase (AST) and alanine aminotransferase (ALT) levels were elevated along 

with hepatic histopathological findings (Halpin & Yamamoto, 2012). With regard to the 

mechanisms involved in METH-induced liver toxicity, an increase in formation of reactive 

oxygen species (ROS) and subsequent lipid peroxidation, reduced glutathione (GSH) 

depletion and mitochondrial dysfunction were observed in freshly isolated rat hepatocytes 

(Eskandari, 2014). Previous studies have shown that an increase in body temperature by 

itself can also instigate hepatotoxic effects, namely those related to oxidative stress and 

resulting lipid peroxidation and membrane damage (Skibba et al., 1990, 1991, 1997), and 

thus most likely contributes to the liver damage observed after METH exposure. Of note, 

exogenous increases in temperature significantly exacerbate METH-induced hepatotoxicity 

in vitro (da Silva et al., 2013). In addition, METH-induced hyperthermia has been shown to 

play a prominent role in facilitating the structural and cellular liver damage and increases in 

peripheral ammonia produced by METH in vivo (Halpin et al., 2014). Consequently, the 

hyperthermia appears to dramatically contribute to the severity of METH-induced liver 

damage. Further investigation, however, is required for more accurate extrapolations and 

determination of the extent to which METH-induced hyperthermia by itself is responsible 

for the METH-induced liver toxicity.

METH-induced damage to dopaminergic nerve terminals in rats and mice is also associated 

with elevated core temperature (Bowyer et al., 1994, 1995; O’Callaghan & Miller, 1994; 

Miller & O’Callaghan, 1994, 2003; O’Callaghan & Miller, 2002). After administration of 

METH, increasing core temperature by elevating ambient temperature results in exacerbated 

dopaminergic neurotoxicity in both mice and rats (Bowyer & Holson, 1995). Decreasing 

core temperature by pharmacological, genetic and/or physiological means in combination 

with METH exposure decreases neurotoxicity (Albers & Sonsalla, 1995). For example, in 

rats, increases in brain levels of METH have no effect on dopaminergic neurotoxicity if 

body temperature is lowered by reducing ambient temperature (Bowyer et al., 1994, 1995). 

In essence, exposure to METH confers a poikilothermic effect where any change in ambient 

temperature appears reflected in corresponding changes in body temperature (see Bowyer et 

al., 1995). As noted earlier, the mechanistic relationship between METH administration, 

hyperthermia, neurotoxicity and METH-associated hyperthermia and mortality has not been 

established. Thus, while elevated temperature appears to be an obligatory component of 

METH neurotoxicity, the mechanism(s) controlling this are unknown.

5. Pharmacological and molecular biological studies of METH hyperthermia

A number of the monoamines, including norepinephrine, dopamine, and serotonin, appear to 

be involved in thermoregulation (Lin et al., 1982, 1983; Sprague et al., 2007), and these 

same neurotransmitters are impacted by METH exposure. Consequently, pharmacological 

and molecular manipulations involving these systems have long been a focus in 

characterizing the nature of METH-induced hyperthermia (e.g., Ito et al., 2008; Makisumi et 

al., 1998; Metzger et al., 2000). Concurrently, the ability of many drugs with no recognized 

monoaminergic actions (e.g., pentobarbital, MK-801, ethanol, dantrolene) to successfully 

block METH hyperthermia (Makisumi et al., 1998; Miller & O’Callaghan, 1994) 
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underscores the complexities involved in determining and understanding the mechanisms 

involved in METH-induced hyperthermia. Accordingly, the following sections summarize 

data describing the ability of a variety of pharmacological (Table 2) and molecular 

biological manipulations, targeting monoaminergic and non-monoaminergic systems, to 

prevent or attenuate METH-induced hyperthermia. In addition, manipulations that have been 

ineffective against METH-induced body temperature changes are briefly mentioned.

5.1. Monoaminergic systems – Norepinephrine, dopamine, and serotonin

The monoaminergic actions of METH in the CNS are well known, have been thoroughly 

characterized, and are the subject of a number of reviews (e.g., see Bowyer & Holson, 

1995). High dose exposure protocols of METH and related compounds cause the release of 

large amounts of dopamine, serotonin and norepinephrine accompanied by monoamine 

oxidase inhibition and a subsequent decrease in the monoamines themselves and their 

metabolites. A variety of methods have been utilized in trying to understand the role of the 

various monoamine systems in METH-induced hyperthermia and include: 1) direct injection 

of the monoamines into various brain areas involved in temperature regulation, 2) depletions 

of monoamines in general or in specific pools, 3) application of agonists or antagonists of 

the monoamine receptors, and 4) genetically removing the transporters or receptors for 

monoamines. None of these manipulations have resulted in a clear picture of how 

monoamines are involved in METH-induced hyperthermia, although some contribution is 

indicated. To further complicate the issue, most of these studies have not focused on METH 

hyperthermia per se, but are more concerned with the role of hyperthermia in promoting 

neurotoxicity (Albers & Sonsalla, 1995; Miller & O’Callaghan, 1994; Metzger et al., 2000). 

Certainly, the field would be served by a concerted effort to determine the causes of METH 

hyperthermia separate from the role this effect plays in METH neurotoxicity.

Although less well-studied than its effects on the CNS, METH also affects monoaminergic 

systems in the periphery. Reserpine, for example, is a vesicular monoamine transporter 

(VMAT) inhibitor that acts by depleting catecholamines from peripheral sympathetic nerve 

endings, causing vasodilation and a reduction in heart rate. It also lowers METH-induced 

elevations in core body temperature (Albers & Sonsalla, 1995; Ares-Santos et al., 2012), 

even causing hypothermia in some cases (Thomas et al., 2008). Consistent with the 

recognized actions of METH in the autonomic nervous system, peripheral chemical 

sympathectomy by 6-hydroxydopamine (OHDA) can completely block METH-induced 

hyperthermia (Makisumi et al., 1998), further supporting a role for peripheral monoamines 

in METH hyperthermia.

However, it should be noted that the contribution of catecholamines to METH hyperthermia 

can vary depending on species and environmental conditions. For example, depletion of 

catecholamines by pretreatment with α-methyl-p-tyrosine (AMPT), which inhibits tyrosine 

hydoxylase, the rate limiting enzyme in the biosynthetic pathway for catecholamines 

(dopamine, norepinephrine), can attenuate the hyperthermic effects of METH in rats, but not 

mice (Metzger et al., 2000; Sandoval et al., 2000; Thomas et al., 2008). In addition, the 

protective effects of AMPT in rats are observed at ambient room temperature, but not at an 

elevated room temperature (28.5° C) (Metzger et al., 2000). This suggests that 
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catecholamines may be important, but just one of the ways for METH to produce its 

hyperthermic effects.

In the sections that follow, efforts are made to summarize both peripheral and central effects 

of monoaminergic systems on body temperature changes. The sections are organized to first 

provide an overview of the effects of the neurotransmitter systems, with a focus on 

norepinephrine, dopamine, and serotonin, on thermoregulation in general, then followed by 

information with regard to their potential contributions to METH hyperthermia.

5.1.1 Norepinephrine systems—Activation of the hypothalamic-pituitary-adrenal 

(HPA) axis triggers the release of numerous hormones and neurotransmitters, including 

norepinephrine (Makisumi et al., 1998; Del Rios et al., 2005). In the CNS, the presence of 

α1-adrenoceptors on thermosensitive neurons in the medial preoptic anterior hypothalamus 

is noteworthy (Mallick et al., 2002). β-Adrenoceptors are also located in the hypothalamus 

(Reznikoff et al., 1986; Grimm et al., 1992) and have been implicated in thermoregulation 

(Docherty & Green, 2010). In the periphery, norepinephrine release triggers vasoconstriction 

and impaired heat dissipation via actions on adrenoceptors and also by uncoupling 

metabolism in thermogenic tissues (Morrison & Nakamura, 2011), further worsening 

hyperthermic events.

Pharmacological interventions that target specific aspects of adrenergic function in the 

context of METH-induced hyperthermia have received limited attention. The β-adrenoceptor 

antagonist, propranolol, is one of the few that has been reported to prevent METH-induced 

hyperthermia in laboratory mice (Albers & Sonsalla, 1995). Although the effects of 

antagonists for α1, α2A, and β3 receptors have been studied in the context of MDMA 

(Docherty & Green, 2010, Hysek et al., 2013), similar investigations with METH have yet to 

be performed.

Most of the manipulations that affect METH-induced noradrenergic function and body 

temperature have been relatively nonspecific. METH-induced increases in body temperature 

are prevented by 6-OHDA sympathectomy or adrenalectomy (Makisumi et al., 1998) by 

inhibiting the presumed release of norepinephine by METH. In adrenalectomized rats 

treated with dexamethasone, METH elicits hyperthermia, demonstrating modulation by 

glucocorticoids (Makisumi et al., 1998). Dantrolene, an inhibitor of sarcoplasmic reticulum 

calcium release in muscle, also prevents METH-induced hyperthermia (Makisumi et al., 

1998). Together, the data suggest that METH stimulates norepinephrine release from 

sympathetic nerve terminals, thereby enhancing thermogenesis in skeletal muscles under the 

permissive control of glucocorticoids (Makisumi et al., 1998). The adrenoceptor subtypes 

that mediate these effects remain to be determined.

5.1.2. Dopamine systems—Early studies have shown that direct injection of dopamine 

or the dopamine agonist, apomorphine, into the anterior preoptic area of the hypothalamus, 

caudate-putamen, or globus pallidus elicits hypothermia, whereas similar microinjections of 

dopamine antagonists (e.g., haloperidol, pimozide) produce hyperthermia (Lin et al., 1982). 

These dopamine-related changes in body temperature appear mediated through alterations in 

Matsumoto et al. Page 10

Pharmacol Ther. Author manuscript; available in PMC 2016 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metabolism and cutaneous blood flow, but not respiratory evaporative processes (Lin et al., 

1982).

METH can readily enter cells and facilitate the release of dopamine while simultaneously 

preventing reuptake, resulting in increased dopamine in the synaptic cleft (Davidson et al., 

2001; Krasnova & Cadet, 2009). However, in contrast to locally administered dopamine or a 

dopamine agonist into specific brain regions (Lin et al., 1982), METH-induced release of 

dopamine causes profound hyperthermia. These differences in response between direct 

application of dopamine or its agonists/antagonists to a given brain area and the METH-

induced hyperthermia suggest that the METH-induced changes in body temperature do not 

result from dopamine release in the specific areas of the brain characterized in the 

microinjections studies (e.g., anterior preoptic area of the hypothalamus, caudate-putamen, 

globus pallidus). Nevertheless, the activation of dopamine receptors (presumably in other 

regions of the body) appears to be a significant mediator of the hyperthermic effects of 

METH (Albers & Sonsalla, 1995; Funahashi et al., 1990; He et al., 2004; Broening et al., 

2005), as ample evidence summarized below suggests these effects can be mitigated through 

antagonism or knockout of dopamine receptors.

Numerous studies have shown, for example, that attenuation of dopamine D2 function using 

pharmacological or molecular biological tools can reduce the hyperthermic effects of 

METH. METH fails to elicit hyperthermia in dopamine D2 knockout mice (Ito et al., 2008; 

Granado et al., 2011). Likewise, the dopamine D2 antagonists, haloperidol and sulpiride, 

attenuate METH-induced hyperthermia in mice (Funahashi et al., 1990; Albers & Sonsalla, 

1995). The selective dopamine D2 antagonist, eticlopride, also mitigates the hyperthermic 

effects of METH at normal ambient temperature, but loses its protective effects at a higher 

ambient temperature (33° C) (Metzger et al., 2000; Broening et al., 2005); this suggests that 

D2 receptors alone are not sufficient for mediating heat dissipation under extreme 

conditions.

Although the magnitude of the effects does not appear as pronounced as for the D2 receptor, 

D1 receptors may also play an important role. The antipsychotic drug, risperidol, can 

mitigate the hyperthermia produced by METH when given as either a pre-treatment or post-

treatment; this effect is thought to be mediated through interactions with dopamine D1 

receptors (Shioda et al., 2010). It should be noted, however, that risperidol also has 5-HT2A 

receptor and anti-adrenergic activity, both of which may further assist in reducing the 

hyperthermic effects of METH (Shioda et al., 2010; Cohen, 1994). Further supporting the 

involvement of D1 receptors in the hyperthermic actions of METH, there is a significant 

reduction in the extent to which METH produces hyperthermia in mice lacking D1 receptors 

(Ito et al., 2008; Ares-Santos et al., 2012). Moreover, the D1 antagonist, SCH 23390, 

attenuates METH-induced hyperthermia (Broening et al., 2005). Similar to the effects seen 

with D2 antagonists, knockout and antagonism of D1 receptors loses their protective effects 

at higher ambient temperatures (29° C and 33° C, respectively) (Ares-Santos et al., 2012; 

Broening et al., 2005). One reason that elevated environmental temperatures may overcome 

the protective effects conveyed by dopamine antagonists at normal ambient temperatures 

may be that it can overcome the ability of the antagonists to dissipate heat through 

peripheral mechanisms under these conditions.
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Although there is general support for the involvement of dopamine D1 and D2 receptors in 

the hyperthermic effects of METH, exceptions have been reported. Raclopride (1 mg/kg) 

and SCH 23390 (0.1 mg/kg), D2 and D1 antagonists, respectively, did not attenuate the 

elevated body temperatures produced by a bolus dose of METH (30 mg/kg) in ICR mice; 

body temperature measurements were taken each hour and the selected doses were ones that 

protected against other neurotoxic endpoints of METH (Xu et al., 2005). The reason for this 

divergence in results from the overall pattern reported by others remains to be determined.

The hyperthermic effects of METH are believed to contribute to an increased risk of death. 

Therefore, it is noteworthy that in dopamine D1 and D2 knockout mice, there is also a 

reduction in lethality in addition to a reduction in hyperthermia produced by METH (Ito et 

al., 2008). Moreover, in both the knockout and wild-type groups, the METH-treated mice 

that survive have lower body temperatures than those that die (Ito et al., 2008).

In contrast to dopamine receptors, the dopamine transporter (DAT) appears to play a more 

limited role in mediating METH-induced changes in body temperature. In particular, DAT 

knockout mice show a modest, albeit insignificant, reduction in METH-induced 

hyperthermia as compared to wild-type controls (Numachi et al., 2007). The compromised 

ability of METH to fully elicit hyperthermia in the absence of DAT suggests some 

involvement of an increase in synaptic dopamine by METH in altering body temperature, 

but indicate that this is most likely not the primary cause of the hyperthermic effects. DAT 

knockout mice do, however, have a significantly higher LD50 for METH compared to wild-

type mice, supporting the importance of dopamine in the lethal effects of METH (Numachi 

et al., 2007).

Overall, the data indicate that the dopamine releasing actions of METH may contribute to 

hyperthermia, with dopamine antagonists capable of mitigating the elevations in body 

temperature. However, the blockade of hyperthermia may be incomplete under some 

conditions, suggesting the involvement of other contributing systems to the body 

temperature changes. Moreover, classical dopaminergic brain regions typically implicated in 

thermogenesis and psychostimulant actions (i.e., hypothalamus and striatum) may not be the 

principal site of action mediating the dopaminergic component of METH-induced 

hyperthermia.

5.1.3. Serotonin systems—Serotonergic pathways have been directly implicated in the 

central control of most forms of thermogenesis (Rothwell, 1994). Previous data have shown 

that changes in neuronal serotonin levels correlate with changes in brain and core body 

temperatures (Schwartz et al., 1995; Salmi & Ahlenius, 1998). Direct injection of serotonin 

into the anterior preoptic area of the hypothalamus or electrical stimulation of the dorsal 

raphe to release serotonin from the nerve terminals elicits hypothermia, whereas direct 

injection of serotonergic antagonists (e.g., methysergide, cyproheptadine) into this region 

produces hyperthermia; these changes in body temperature result from alterations in 

metabolism and vasodilation/constriction of the blood vessels in the skin (Lin et al., 1983). 

Activation of 5-HT1A and 5-HT3 receptors in the brain also elicits hypothermia (Voronova 

et al., 2011). Since the aforementioned antagonists (methysergide, cyproheptadine) attenuate 
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5-HT2 receptor signaling, it appears that multiple serotonin receptor subtypes participate in 

central thermoregulatory processes.

In contrast, systemic administration of a selective 5-HT2A receptor agonist elevates body 

temperature (Zhang & Tao, 2011). The hyperthermic effect of 5-HT2A agonists can be life 

threatening and has been attributed at least in some cases to activation of skeletal muscles 

(Loscher et al., 1990). In addition, peripheral effects of serotonin include the regulation of 

skin blood flow, which is a major mechanism involved in thermoregulation (Mauer-Spurej, 

2005).

As with the other studies investigating the role of monoamine systems in METH-induced 

hyperthermia, studies investigating the role of the serotonin system have examined how 

manipulations involving serotonin receptors, transporters and levels of the transmitter 

influence METH–induced hyperthermia. Commensurate with its actions on the other 

monoamines, METH facilitates serotonin release from the nerve terminal, inhibits the action 

of the rate-limiting enzyme, tryptophan hydroxylase, for the production of serotonin, inhibits 

its transport and causes its long term depletion in some instances (Kuczenski et al., 1995; 

Fukumura et al., 1998; Ago et al., 2006; Numachi et al., 2008). Reductions in brain 

serotonin effected by treating mice with p-chlorophenylalanine (PCPA), an irreversible 

inhibitor of tryptophan hydroxylase, the rate limiting enzyme in the biosynthesis of 

serotonin, attenuates METH-induced hyperthermia (Thomas et al., 2010). However, 

treatment of mice with tryptophan hydroxylase does not significantly alter the effects of 

METH on body temperature, and tryptophan hydroxylase 2 knockout mice which lack brain 

serotonin in fact exhibit an enhanced hyperthermic response of about 1°C to METH 

(Thomas et al., 2010). This suggests that when endogenous serotonin levels are reduced, the 

hyperthermic effects of METH can be inhibited, but if endogenous serotonin is unavailable, 

then other neurochemical systems may compensate which can result in a paradoxical 

enhancement of hyperthermia.

Recent studies in rats show that METH also produces significant dose dependent increases 

in plasma serotonin (Zolkowska et al., 2006; Rothman et al., 2008; Yubero-Lahoz et al., 

2012). Because platelets and neurons express the same serotonin transporter (SERT) protein 

(Lesch et al. 1993) and 99% of the circulating serotonin is stored in platelets (Zolkowska et 

al., 2006), the elevations in plasma serotonin may well be mediated, at least in part, via 

interactions of METH with these platelet SERT proteins (Zolkowska et al., 2006; Rothman 

et al., 2008; Yubero-Lahoz et al., 2012). The association between METH-induced plasma 

serotonin and body temperature changes was, however, not examined in these studies and 

remains to be investigated. Nevertheless, while the specific sites in the body that mediate 

this hyperthermic effect have yet to be determined, peripheral targets are likely involved 

since central activation of serotonin function tends to cause reductions in body temperature.

It should be noted, however, that SERT per se is unlikely to be a direct contributor to 

hyperthermia. METH-induced hyperthermia is not altered nor is basal temperature in mice 

lacking SERT (Numachi et al., 2007). However, in the absence of DAT, SERT can have a 

compensatory role which permits METH to exert at least some of its hyperthermic effects 

(Numachi et al., 2007).
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Other reports also suggest that blocking the actions of released serotonin can prevent 

elevations in body temperature (Azzaro & Rutledge, 1973; Ginawi et al., 2005). NAN-190, a 

5-HT1A receptor antagonist, blocks METH-induced increases in body temperature, while 

displaying no effects on its own (Ginawi et al., 2005). In contrast, 8-OH-DPAT, a 5-HT1A 

receptor agonist that on its own can produce hypothermia (Bristow et al., 1991), fails to 

attenuate METH-induced hyperthermia (Albers & Sonsalla, 1995).

Paradoxically, fenfluramine, which enhances serotonin function through multiple 

mechanisms, mitigates the hyperthermic effects of METH (Miller & O’Callaghan, 1994; 

Albers & Sonsalla, 1995). It, however, remains unclear why this serotonin indirect agonist 

function would inhibit METH-induced hyperthermia when all other serotonergic compounds 

that reduce the hyperthermic effects of METH inhibit serotonin function. Moreover, 

fenfluramine also enhances norepinephrine release (Rothman et al., 2003), suggesting that 

the protective effects of the drug against METH-induced hyperthermia involve targets other 

than its classical monoaminergic mechanisms.

In conclusion, the data as a whole suggest that serotonin systems can have a significant 

modulatory and compensatory role in the hyperthermic effects of METH. However, 

endogenous serotonin does not appear to be a requirement for METH to elicit hyperthermia.

5.2. Reactive species

In addition to modulating the monoaminergic systems, METH may cause increases in core 

body temperature through the induction of reactive oxygen and nitrogen species (ROS/RNS) 

within the CNS. Many studies have thus investigated the effects of antioxidant compounds 

and inhibitors of enzymes and proteins responsible for the production of these ROS/RNS in 

the CNS.

Pretreatment of rats with the ROS scavenger, α-tocopherol, attenuates METH-induced 

hyperthermia (Park et al., 2006). The pineal hormone, melatonin, also acts as a free radical 

scavenger and prevents METH-induced hyperthermia in mice (Itzhak et al., 1998).

The generation of hydroxyl radicals from H2O2 is catalyzed by iron via the Fenton reaction. 

The iron chelator, deferoxamine, which inhibits the generation of ROS, also significantly 

attenuates METH-induced hyperthermia in rats (Park et al., 2006).

Under normal conditions, nitric oxide synthase (NOS) catalyzes the formation of nitric oxide 

from L-arginine, and has an important role in vasodilation through the relaxation of smooth 

muscles. Under pathological conditions, NOS can also catalyze the production of the free 

radical, superoxide. 7-Nitroindazole is a neuronal NOS (nNOS) inhibitor that attenuates 

METH-induced elevations in body temperature at low ambient temperature (20° C; Callahan 

& Ricaurte, 1998), but not at normal ambient temperature (Itzhak & Ali, 1996), or at higher 

ambient temperature (28° C; Callahan & Ricaurte, 1998). Two other nNOS inhibitors, S-

methylthiocitrulline and 3-bromo-7-nitroindazole, also cannot block METH-induced 

hyperthermia at room temperature (Itzhak et al., 2000). However, nNOS knockout mice are 

resistant to the hyperthermic effects of METH, compared to wild-type mice (Itzhak et al., 

1998). Since free radicals are generated very quickly, it is possible that the interventions 
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produce measurable effects against METH-induced hyperthermia only when no catalyzing 

enzyme is present or the reactions are sufficiently slowed (e.g., by reducing temperature); 

when the reactions occur at a faster rate at higher temperatures, the intervention attempts 

may be overcome.

In addition to ROS, studies also suggest the involvement of peroxynitrite radicals in the 

hyperthermic effects of METH. The peroxynitrite catalyst, 5,10,15,20-tetrakis(N-methyl-4′-

pyridyl)porphyrinato iron III (FeTMPγP) protects against METH-induced hyperthermia in 

rodents (Imam et al., 1999). Moreover, compared to young rats, aged animals are more 

sensitive to METH-induced formation of peroxynitrite radicals and also exhibit increased 

sensitivity to the hyperthermic and lethal effects of METH (Imam et al., 2001). In contrast, 

the radical scavenger, edaravone, blocks peroxynitrite production, but cannot attenuate the 

hyperthermic effects of METH in mice (Kawasaki et al., 2006), underscoring the complexity 

of the relationship between METH, the generation of reactive species, and hyperthermia.

5.3. Immune system

Another potential mechanism by which METH is believed to cause hyperthermia is through 

increases in immune responses, such as cytokine release. These effects appear to be 

mediated primarily through peripheral, rather than central, mechanisms.

Systemic injections of interferon-γ significantly reduce METH-induced elevations in core 

body temperature (Hozumi et al., 2008); however, intracerebroventricular treatment has no 

significant effects on body temperature. These results imply that METH may be modulating 

immune system responses in the periphery, leading to alterations in body temperature.

Mithramycin is an FDA-approved immunosuppressive antibiotic with antitumor and 

neuroprotective actions (Gerber & Steinberg, 1976; Sleiman et al., 2011). It also attenuates 

METH-induced hyperthermia in laboratory animals (Hagiwara et al., 2009). Although the 

molecular mechanism underlying this protective effect has yet to be determined, 

mithramycin acts as an inhibitor of the specificity protein 1 (SP-1) family of transcription 

factors (Ray et al., 1989). Through this mechanism, mithramycin has been reported to 

abolish the induction of heat shock protein (HSP) 70 (Marinova et al., 2009) which can be 

activated by METH (Beauvais et al., 2011).

5.4. Miscellaneous mechanisms that affect METH hyperthermia

The activation of protein kinase Cδ (PKCδ), which can result from activation of 

dopaminergic neurotransmission, also appears to contribute to the hyperthermic effects of 

METH. Rottlerin, a PKCδ inhibitor, mitigates METH-induced hyperthermia (Shin et al., 

2011). It also attenuates the concomitant increases in brain PKCδ produced by METH (Shin 

et al., 2011). The potential importance of PKCδ in the hyperthermic effects of METH is also 

supported by the observation that PKCδ knockout mice are resistant to the hyperthermic 

effects of METH (Shin et al., 2011).

Sigma receptors also appear to play a role in the hyperthermic effects of METH. METH 

interacts with sigma receptors at micromolar concentrations that can be achieved under 

physiological conditions (Nguyen et al., 2005). These proteins are found in the 
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hypothalamus, as well as the cardiovascular system (McLean & Weber, 1988; Ela et al., 

1994; Zhang & Cuevas, 2002; Tagashira et al., 2010). Pretreatment of mice with selective 

sigma receptor putative antagonists, including AC927, AZ66, CM156, and SN79, 

significantly attenuates METH-induced hyperthermia (Matsumoto et al., 2008; Kaushal et 

al., 2011, 2013; Seminerio et al., 2012, 2013; Robson et al., 2013).

Another miscellaneous compound that has been reported to attenuate METH-induced 

hyperthermia, without significantly altering body temperature on its own, is phenytoin, an 

anticonvulsant drug (Albers & Sonsalla, 1995). In addition, the following compounds reduce 

METH-induced hyperthermia, but also produce hypothermia when administered alone: 

aminoxyacetic acid (AOAA), a GABA transaminase inhibitor (Albers & Sonsalla, 1995); 

MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist (Albers & Sonsalla, 1995); 

and ibogaine, an alkaloid shown to block many effects of abused substances (Yu et al., 

1999).

5.5. Mechanisms that do not affect METH hyperthermia

Many of the drugs that have been previously shown to have no significant effects on METH-

induced hyperthermia were initially tested due to their fever-reducing, anti-inflammatory, 

and/or neuroprotective effects. These compounds and mechanisms are briefly summarized in 

this section and underscore the differences between the pathophysiology and clinical 

manifestations of hyperthermia vs. fever (McAllen & Schwartz, 2010). It also serves as a 

reminder that neuroprotection can be achieved through temperature-independent 

mechanisms.

Non-steroidal anti-inflammatory drugs (NSAIDs) do not have significant effects on METH-

induced hyperthermia. In mice, pretreatment with ibuprofen or aspirin has been confirmed to 

have no effect on METH-induced hyperthermia (Albers & Sonsalla, 1995; Tsuji et al., 

2009).

Similarly, an interleukin-1 (IL-1) receptor antagonist failed to have significant effects on 

METH-induced hyperthermia in rodents, although it did reduce deaths (Bowyer et al., 

1994). Although IL-1 and related family members are known pyrogens (Kluger, 1991; Leon, 

2002) whose expression is increased in the hypothalamus following METH (Bandtlow et al., 

1990; Yamaguchi et al., 1991; Bowyer et al., 1994), their expression levels are not 

correlated with the body temperatures of the animals (Seminerio et al., 2012). Moreover, 

pharmacological intervention is capable of preventing the hyperthermic response to METH 

in the presence of increases in hypothalamic IL-1β expression (Seminerio et al., 2012).

A number of neuroprotective agents and genetic modifications that were tested primarily to 

determine their effects on METH-induced neurotoxicity, were shown to lack significant 

effects on METH-induced hyperthermia. They include: edaravone, a pharmaceutical product 

available in Japan indicated for ischemia related to acute ischemic stroke (Kawasaki et al., 

2006); carnosine, an endogenous antioxidant available in several over-the-counter dietary 

supplements (Pubill et al., 2002); minocycline, a second generation tetracycline antibiotic 

that crosses the blood brain barrier to elicit neuroprotective and anti-inflammatory effects in 

animals models (Zhang et al., 2006); memantine, an NMDA antagonist used in Europe for 
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the treatment of neurodegenerative disorders (Chipana et al., 2008); methylcaconitine, an 

α7-nicotinic acetylcholine receptor antagonist that inhibits METH-induced ROS production 

in rat synaptosomes (Escubedo et al., 2005); calcitriol, a vitamin D metabolite and 

neuroprotective agent (Cass et al., 2006); ketamine, a dissociative anesthetic (Ke et al., 

2008); and interleukin-6 knockout mice (Ladenheim et al., 2000).

6. Summary and conclusions

METH elicits elevations in body temperature, with high doses causing hyperthermia, which 

can be life threatening. Clinically, the hyperthermic effects of METH are treated 

symptomatically by cooling. No specific pharmacotherapy currently is indicated for treating 

the hyperthermic effects of METH. This situation is not surprising given that no 

pharmacological profile exists for protecting against METH-induced hyperthermia because 

no single mechanism has been identified underlying the hyperthermic actions of METH. 

Rather, multiple systems appear to contribute to the elevations in body temperature. While 

there has been an emphasis on drugs affecting monoaminergic systems as a means to lower 

METH-related hyperthermia, as we note above, this stems from the historical basis of 

METH actions on monoaminergic neurotransmitters rather than a solid scientific basis for 

drug interventions targeting a specific monoamine-related temperature mechanism. Indeed, 

we note that broad classes of pharmacological agents, with no clear mechanistic effects on 

thermoregulation (e.g. Miller & O’Callaghan, 1994), all may serve as effective 

countermeasures against METH-induced hyperthermia.

While much is known about the mechanisms that regulate thermal physiology in response to 

hot and cold ambient environments, the basis for the hyperthermic effects of METH remain 

largely unknown and relatively unexplored. Most animal studies to date have employed 

systemic administration of drugs or genetic knockouts to evaluate their effects on METH, 

making it difficult to conclusively attribute changes to central and/or peripheral sites of 

action. The few studies that have attempted to do so suggest the importance of peripheral 

mechanisms, often implicating the ability of the manipulation to affect heat generation 

within muscle. In that regard, noradrenergic effects in the sympathetic nervous system 

appear important in mediating METH-induced hyperthermia. Therefore, further 

investigations into the involvement of specific subtypes of adrenoceptors, particular those 

that preferentially act in the periphery, would be of value. In addition, studies examining the 

involvement of peripheral serotonin in mediating the hyperthermic effects of METH are 

greatly needed.

A wide variety of targets and mechanisms have been implicated in the hyperthermic effects 

of METH, beyond involvement of a limited number of neurotransmitter systems. These 

include the blood brain barrier, choroid plexus, meninges-associated vasculature (Kiyatkin 

& Sharma, 2009; Bowyer et al., 2013) and glial as well as neuronal mechanisms (Kiyatkin 

& Sharma, 2011). Indeed, as sources of proinflammatory mediators, some potentially 

involved in temperature regulation, astrocytes and microglia represent overlooked players in 

METH actions related to hyperthermia.
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While assumptions have been made to suggest that METH hyperthermia operates through 

disruption in known thermoregulatory mechanisms, there is little data to support this notion. 

Most studies to date have focused on mediators previously implicated in fever with modest 

success, and those that convey neuroprotective actions have provided only slightly more 

insight. Given the lack of clear avenues of investigation to pursue to achieve an 

understanding of METH-induced hyperthermia and its treatment, a more global exploration 

might be of benefit. In that regard, genome-wide array studies of multiple organs (not just 

brain) following hyperthermia instigated by elevations in ambient temperature vs. METH-

induced hyperthermia might reveal genes and networks involved in mediating elevated 

temperatures under these two conditions and, hopefully, point to targets for therapeutic 

intervention.

Health-related complications resulting from METH abuse remains a significant worldwide 

public health problem. Further studies to better understand the pathophysiology of METH-

induced hyperthermia are clearly needed to delineate the molecular mechanisms and 

biological systems that contribute to it. This information will be critical for developing 

effective therapeutic interventions to assist in the treatment of this potentially life 

threatening condition.
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Abbreviations

AC927 N-phenethylpiperidine oxalate

ADHD attention deficit hyperactivity disorder

ALT alanine aminotransferase

AOAA aminoxyacetic acid

AST aspartate aminotransferase

AZ66 3-(4-(4-cyclohexylpiperizin-1-yl)pentyl)-6-

fluorobenzo[d]thiazol-2(3H)one

AMPT α-methyl-p-tyrosine

CM156 3-(4-(4-cyclohexylpiperizin-1-yl)butyl)benzo[d]thiazole-2(3H)-thione

CNS central nervous system

DAT dopamine transporter

FeTMPγP 5,10,15,20-tetrakis(N-methyl-4′-pyridyl)porphyrinato iron III

FDA Food and Drug Administration

GABA γ-aminobutyric acid

GSH reduced glutathione
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H2O2 hydrogen peroxide

HPA hypothalamic-pituitary-adrenal

HSP heat shock protein

IL-1 interleukin-1

MDMA 3,4-methylenedioxymethamphetamine

METH methamphetamine

MK-801 (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-

imine hydrogen maleate

NAN-190 1-(2-methoxyphenyl)-4-(4-[2-phthalimido]butyl)piperazine

NMDA N-methyl-D-aspartate

NOS nitric oxide synthase

NSAID non-steroidal anti-inflammatory drug

6-OHDA 6-hydroxydopamine

8-OH-DPAT 8-hydroxy-N,N-dipropyl-2-aminotetralin

PCPA p-chlorophenylalanine

PKC protein kinase C

RNS reactive nitrogen species

ROS reactive oxygen species

SCH 23390 (R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-

benzazepine hydrochloride

SERT serotonin transporter

SN79 6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-

yl)butyl)benzo[d]oxazol-2(3H)one

SP-1 specificity protein 1

TRP transient receptor potential

VMAT vesicular monoamine transporter

References

Ago Y, Nakamura S, Uda M, Kajii Y, Abe M, Baba A, Matsuda T. Attenuation of the 5-HT1A 
receptor agonist osemozotan of the behavioral effects of single and repeated methamphetamine in 
mice. Neuropharmacol. 2006; 51:914–922.

Albers DS, Sonsalla PK. Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in 
mice: pharmacological profile of protective and nonprotective agents. J Pharmacol Exp Ther. 1995; 
275:1104–1114. [PubMed: 8531070] 

Albertson TE, Derlet RW, Van Hoozen BE. Methamphetamine and the expanding complications of 
amphetamines. West J Med. 1999; 170:214–219. [PubMed: 10344175] 

Matsumoto et al. Page 19

Pharmacol Ther. Author manuscript; available in PMC 2016 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ares-Santos S, Granado N, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R. Doapmine D1 
receptor deletion strongly reduces neurotoxic effects of methamphetamine. Neurobiol Dis. 2012; 
45:810–820. [PubMed: 22115942] 

Azzaro AJ, Rutledge CO. Selectivity of release of norepinephrine, dopamine, and 5-
hydroxytryptamine by amphetamine in various regions of rat brain. Biochem Pharmacol. 1973; 
22:2801–2813. [PubMed: 4761552] 

Bandtlow CE, Meyer M, Lindholm D, Spranger M, Heumann R, Thoenen H. Regional and cellular 
codistribution of interleukin 1 beta and nerve growth factor mRNA in the adult rat brain: possible 
relationship to the regulation of nerve growth factor synthesis. J Cell Biol. 1990; 111:1701–1711. 
[PubMed: 2211833] 

Beavais G, Atwell K, Jaynathi S, Ladenheim B, Cadet JL. Involvement of dopamine receptors in binge 
methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. 
PLoS One. 2011; 6:e28946. [PubMed: 22174933] 

Bowyer JF, Davies DL, Schmued L, Broening HW, Newport GD, Slikker W Jr, Holson RR. Further 
studies of the role of hyperthermia in methamphetamine neurotoxicity. J Pharmacol Exp Ther. 
1994; 268:1571–1580. [PubMed: 8138969] 

Bowyer, JF.; Holson, RR. Methamphetamine and amphetamine neurotoxicity. In: Chang, LW.; Dyer, 
RS., editors. Handbook of Neurotoxicology. Marcel Dekker, Inc; New York: 1995. p. 845-870.

Bowyer JF, Patterson TA, Saini UT, Hanig JP, Thomas M, Camacho L, George NI, Chen JJ. 
Comparison of the global gene expression of choroid plexus and meninges and associated 
vasculature under control conditions and after pronounced hyperthermia or amphetamine toxicity. 
BMC Genomics. 2013; 14:147. [PubMed: 23497014] 

Bowyer JF, Tank AW, Newport GD, Slikker W Jr, Ali SF, Holson RR. The influence of environmental 
temperature on the transient effects of methamphetamine on dopamine levels and dopamine 
release in rat striatum. J Pharmacol Exp Ther. 1992; 260:817–824. [PubMed: 1346646] 

Bristow LJ, Baucutt L, Thorn L, Hutson PH, Noble A, Beer M, Middlemiss DN, Tricklebank MD. 
Behvioural and biochemical evidence of the interaction of the putative antipsychotic agent, BMY 
14802 with the 5-HT1A receptor. Eur J Pharmacol. 1991; 204:21–28. [PubMed: 1839533] 

Broening HW, Morford LL, Vorhees CV. Interactions of dopamine D1 and D2 receptor antagonists 
with D-methamphetamine-induced hyperthermia and striatal dopamine and serotonin reductions. 
Synapse. 2005; 56:84–93. [PubMed: 15714503] 

Brown PL, Kiyatkin EA. Fatal intra-brain heat accumulation induced by methamphetamine at 
normothermic conditions in rats. Int J Neuroprot Neuroregener. 2005; 1:86–90.

Brown PL, Wise RA, Kiyatkin EA. Brain hyperthermia is induced by methamphetamine and 
exacerbated by social interaction. J Neurosci. 2003; 23:3924–3929. [PubMed: 12736362] 

Bynum GD, Pandolf KB, Schuette WH, Goldman RF, Lees DE, Whang-Peng J, Atkinson ER, Bull 
JM. Induced hyperthermia in sedated humans and the concept of critical thermal maximum. Am J 
Physiol Regul Integr Comp Physiol. 1978; 235:R228–R236.

Callahan BT, Ricaurte GA. Effect of 7-nitroindazole on body temperature and methamphetamine-
induced dopamine toxicity. NeuroReport. 1998; 9:2691–2695. [PubMed: 9760103] 

Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 
2004; 84:277–359. [PubMed: 14715917] 

Cass WA, Smith MP, Peters LE. Calcitriol protects against the dopamine- and serotonin-depleting 
effects of neurotoxic doses of methamphetamine. Ann N Y Acad Sci. 2006; 1074:261–271. 
[PubMed: 17105922] 

Centers for Disease Control and Prevention (CDC). Heat-related deaths – United States 1999–2003. 
MMWR Morb Mortal Wkly Rep. 2006; 55:796–798. [PubMed: 16874294] 

Charkoudian N. Skin blood flow in adult human thermogenesis: how it works, when it does not, and 
why. Mayo Clin Proc. 2003; 78:603–612. [PubMed: 12744548] 

Chipana C, Torres I, Camarasa J, Pubill D, Escubedo E. Memantine protects against amphetamine 
derivatives-induced neurotoxic damage in rodents. Neuropharmacol. 2008; 54:1254–1263.

Clark KH, Wiley CA, Bradberry CW. Psychostimulant abuse and neuroinflammation: emerging 
evidence of their interconnection. Neurotox Res. 2012 Epub ahead of print. 

Cohen LJ. Risperidone. Pharmacotherapy. 1994; 14:253–265. [PubMed: 7524043] 

Matsumoto et al. Page 20

Pharmacol Ther. Author manuscript; available in PMC 2016 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Crean RD, Davis SA, Von Huben SN, Lay CC, Katner SN, Taffe MA. Effects of (+/−)3,4-
methylenedioxymethamphetamine, (+/−)3,4-methylenedioxyamphetamine and methamphetamine 
on temperature and activity in rhesus macaques. Neurosci. 2006; 142:515–525.

Crean RD, Davis SA, Taffe MA. Oral administration of (+/−)3,4-methylenedioxymethamphetamine 
and (+)methamphetamine alters temperature and activity in rhesus macaques. Pharmacol Biochem 
Behav. 2007; 87:11–19. [PubMed: 17475314] 

Cruickshank CC, Dyer KR. A review of the clinical pharmacology of methamphetamine. Addiction. 
2009; 104:1085–1099. [PubMed: 19426289] 

da Silva DD, Silva E, Carmo H. Combination effects of amphetamines under hyperthermia – the role 
played by oxidative stress. J Appl Toxicol. 2013 Epub ahead of print. 

Davidson C, Gow AJ, Lee TH, Ellinwood EH. Methamphetamine neurotoxicity: necrotic and 
apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Brain Res Rev. 
2001; 36:1–22. [PubMed: 11516769] 

Davis S, Heal DJ, Stanford SC. Long-lasting effects of an acute stress on the neurochemistry and 
function of 5-hydroxytryptaminergic neurons in the mouse brain. Psychopharmacol. 1995; 
118:267–272.

Del Rios M, Lanigan M, Zayas V. Drugs of abuse: providing the best in evidence-based care to “self-
medicated” patients. Emerg Med Prac. 2005; 7:1–24.

Docherty JR, Green AR. The role of monoamines in the changes in body temperature induced by 3,4-
methylenedioxymehtamphetamine (MDMA, ecstasy) and its derivatives. Br J Pharmacol. 2010; 
160:1029–1044. [PubMed: 20590597] 

Doyle JR, Yamamoto BK. Serotonin 2 receptor modulation of hyperthermia, corticosterone, and 
hippocampal serotonin depletion following serial exposure to chronic stress and 
methamphetamine. Psychoneuroendocrinol. 2010; 35:629–633.

Ela C, Barg J, Vogel Z, Hasin Y, Eilam Y. Sigma receptor ligands modulate contractility, Ca++ influx 
and beating rate in cultured cardiac myocytes. J Pharmacol Exp Ther. 1994; 269:1300–1309. 
[PubMed: 8014874] 

Escubedo E, Chipana C, Perez-Sanchez M, Camarasa J, Pubill D. Methyllycaconitine prevents 
methamphetamine-induced effects in mouse striatum: involvement of alpha7 nicotinic receptors. J 
Pharmacol Exp Ther. 2005; 315:658–667. [PubMed: 16076935] 

Eskandari MR, Rahmati M, Khajeamiri AR, Kobarfard F, Noubarani M, Heidari H. A new approach 
on methamphetamine-induced hepatotoxicity: involvement of mitochondrial dysfunction. 
Xenobiotica. 2014; 44:70–76. [PubMed: 23786375] 

Estler CJ. Dependence on age of methamphetamine-produced changes in thermoregulation and 
metabolism. Experientia. 1975; 31:1436–1437. [PubMed: 1213067] 

Eyer F, Zilker T. Bench-to-bedside review: mechanisms and management of hyperthermia due to 
toxicity. Crit Care. 2007; 11:236. [PubMed: 18096088] 

Fukumura M, Cappon GD, Broening HW, Vorhees CV. Methamphetamine-induced dopamine and 
serotonin reductions in neostriatum are not gender specific n rats with comparable hyperthermic 
responses. Neurotoxicol Teratol. 1998; 20:441–448. [PubMed: 9697970] 

Funahashi M, Kohda H, Hori O, Hayashida H, Kimura H. Potentiating effect of morphine upon d-
methamphetamine-induced hyperthermia in mice. Effects of naloxone and haloperidol. Pharmacol 
Biochem Behav. 1990; 36:345–350. [PubMed: 2356207] 

Gerber NL, Steinberg AD. Clinical use of immunosuppressive drugs: part II. Drugs. 1976; 11:90–112. 
[PubMed: 1278059] 

Ginawi OT, Al-Majed AA, Al-Suwailem AK. NAN-190, a possible specific antagonist for 
methamphetamine. Reg Toxicol Pharmacol. 2005; 42:122–127.

Gordon CG, Watkinson WP, O’Callahan JP, Miller DB. Effects of 3,4-
methylenedioxymethamphetamine on autonomic thermoregulatory response of the rat. Pharmacol 
Biochem Behav. 1991; 38:339–344. [PubMed: 1676171] 

Gordon CJ. A review of terms and proposed nomenclature for regulated vs. forced changes in body 
temperature. Life Sci. 1983; 32:1285–1295. [PubMed: 6339853] 

Gordon, CJ. Temperature and Toxicology: An Integrative, Comparative, and Environmental 
Approach. CRC Press; Boca Raton, FL: 2005. 

Matsumoto et al. Page 21

Pharmacol Ther. Author manuscript; available in PMC 2016 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gordon CJ. Thermophysiological responses to hyperthermia drugs: extrapolating from rodent to 
human. Prog Brain Res. 2007; 162:63–79. [PubMed: 17645915] 

Granado N, Ares-Santos S, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R. Dopamine D2-
receptor knockout mice are protected against dopaminergic neurotoxicity induced by 
methamphetamine or MDMA. Neurobiol Dis. 2011; 42:391–403. [PubMed: 21303698] 

Green AR, O’Shea E, Colado MR. A review of the mechanisms involved in the acute MDMA 
(ecstasy)-induced hyperthermic response. Eur J Pharmacol. 2004; 500:3–13. [PubMed: 15464016] 

Greenblatt EN, Osterberg AC. Correlations of activating and lethal effects of excitatory drugs in 
grouped and isolated mice. J Pharmacol Exp Ther. 1961; 131:115–119. [PubMed: 13708274] 

Grimm LJ, Blendy JA, Kellar KJ, Perry DC. Chronic reserpine administration selectively up-regulates 
beta 1- and alpha 1b-adrenergic receptors in rat brain: an autoradiographic study. Neurosci. 1992; 
47:77–86.

Hagiwara H, Iyo M, Hashimoto K. Mithramycin protects against dopaminergic neurotoxicity in the 
mouse brain after administration of methamphetamine. Brain Res. 2009; 1301:189–196. [PubMed: 
19748494] 

Halpin LE, Northrop NA, Yamamoto BK. Ammonia mediates methamphetamine-induced increases in 
glutamate and excitotoxicity. Neuropsychopharmacol. 2014; 39:1031–1038.

Halpin LE, Yamamoto BK. Peripheral ammonia as a mediator of methamphetamine neurotoxicity. J 
Neurosci. 2012; 32:13155–13163. [PubMed: 22993432] 

Haning W, Goebert D. Electrocardiographic abnormalities in methamphetamine abusers. Addiction. 
2007; 102(Suppl 1):70–75. [PubMed: 17493055] 

He J, Xu H, Yang Y, Zhang X, Li XM. Neuroprotective effects of olanzapine on methamphetamine-
induced neurotoxicity are associated with an inhibition of hyperthermia and prevention of Bcl-2 
decrease in rats. Brain Res. 2004; 1018:186–192. [PubMed: 15276877] 

Hendrickson RG, Horowitz BZ, Norton RL, Notenboom H. “Parachuting” meth: a novel delivery 
method for methamphetamine and delayed-onset toxicity from “body stuffing. Clin Toxicol. 2006; 
44:379–382.

Hozumi H, Asanuma M, Miyazaki I, Fukuoka S, Kikkawa Y, Kimoto N, Kitamura Y, Sendo T, Kita T, 
Gomita Y. Protective effects of interferon-gamma against methamphetamine-induced 
neurotoxicity. Toxicol Lett. 2008; 177:123–129. [PubMed: 18282668] 

Hysek CM, Schmid Y, Rickli A, Liechti ME. Carvedilol inhibits cardiostimulant and thermogenic 
effects of MDMA in humans: Lost in translation. Br J Pharmacol. 2013; 170:1273–1275. 
[PubMed: 24033079] 

Imam SZ, Crow JP, Newport GD, Islam F, Slikker W Jr, Ali SF. Methamphetamine generates 
peroxynitrite and produced dopaminergic neurotoxicity in mice: protective effects of peroxynitrite 
decomposition catalyst. Brain Res. 1999; 837:15–21. [PubMed: 10433983] 

Ito M, Numachi Y, Ohara A, Sora I. Hyperthermic and lethal effects of methamphetamine: Roles of 
dopamine D1 and D2 receptors. Neurosci Lett. 2008; 438:327–329. [PubMed: 18486343] 

Itzhak Y, Ali SF. The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against 
methamphetamine-induced neurotoxicity in vivo. J Neurochem. 1996; 67:1770–1773. [PubMed: 
8858965] 

Itzhak Y, Gandia C, Huang PL, Ali SF. Resistance of neuronal nitric oxide synthase-deficient mice to 
methamphetamine-induced doapminergic neurotoxicity. J Pharmacol Exp Ther. 1998; 284:1040–
1047. [PubMed: 9495865] 

Itzhak Y, Martin JL, Black MD, Ali SF. Effect of melatonin on methamphetamine- and i-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity and methamphetamine-
induced behavioral sensitization. Neuropharmacol. 1998; 37:781–791.

Itzhak Y, Martin JL, Ali SF. nNOS inhibitors attenuate methamphetamine-induced dopaminergic 
neurotoxicity but not hyperthermia in mice. NeuroReport. 2000; 11:2943–2946. [PubMed: 
11006970] 

Kamijo Y, Soma K, Nishida M, Namera A, Ohwada T. Acute liver failure following intravenous 
methamphetamine. Vet Hum Toxicol. 2002; 44:216–217. [PubMed: 12136967] 

Kashani J, Ruha AM. Methamphetamine toxicity secondary to inavaginal body stuffing. J Toxicol Clin 
Toxicol. 2004; 42:987–989. [PubMed: 15641645] 

Matsumoto et al. Page 22

Pharmacol Ther. Author manuscript; available in PMC 2016 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kaushal N, Seminerio MJ, Shaikh J, Medina MA, Mesangeau C, Wilson LL, McCurdy CR, 
Matsumoto RR. CM156, a high affinity sigma ligand, attenuates the stimulant and neurotoxic 
effects of methamphetamine in mice. Neuropharmacol. 2011; 61:992–1000.

Kaushal N, Seminerio MJ, Robson MJ, McCurdy CR, Matsumoto RR. Pharmacological evaluation of 
SN79, and sigma (σ) receptor ligand, against methamphetamine-induced neurotoxcity in vivo. Eur 
Neuropsychopharmacol. 2013; 23:960–971. [PubMed: 22921523] 

Kawasaki T, Ishihara K, Ago Y, Nakamura S, Itoh S, Baba A, Matsuda T. Protective effect of the 
radical scavenger edaravone against methamphetamine-induced dopaminergic neurotoxicity in 
mouse striatum. Eur J Pharmacol. 2006; 542:92–99. [PubMed: 16784740] 

Ke JJ, Chen HI, Jen CJ, Kuo YM, Cherng CG, Tsai YP, Ho MC, Tsai CW, Yu L. Mutual enhancement 
of central neurotoxicity induced by ketamine followed by methamphetamine. Toxicol Appl 
Pharmacol. 2008; 227:239–247. [PubMed: 18076959] 

Kiyatkin EA. Brain temperature fluctuations during physiological and pathological conditions. Eur J 
Appl Physiol. 2007; 101:3–17. [PubMed: 17429680] 

Kiyatkin EA, Brown PL, Wise RA. Brain temperature fluctuation: a reflection of functional neural 
activation. Eur J Neurosci. 2002; 17:1–5.

Kiyatkin EA, Sharma HS. Acute methamphetamine intoxication: brain hyperthermia, blood-brain 
barrier, brain edema, and morphological cell abnormalities. Int Rev Neurobiol. 2009; 88:65–100. 
[PubMed: 19897075] 

Kiyatkin EA, Sharma HS. Expression of heat shock protein (HSP 72 kDa) during acute 
methamphetamine intoxication depends on brain hyperthermia: neurotoxicity or neuroprotection? 
J Neural Transm. 2011; 118:47–60. [PubMed: 20931246] 

Kiyatkin EA, Sharma HS. Environmental conditions modulate neurotoxic effects of psychomotor 
stimulant drugs of abuse. Int Rev Neurobiol. 2012; 102:147–171. [PubMed: 22748829] 

Kluger MJ. Fever: role of pyrogens and cryogens. Physiol Rev. 1991; 71:93–127. [PubMed: 1986393] 

Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. Brain Res Rev. 2009; 
60:379–407. [PubMed: 19328213] 

Kuczenski R, Segal DS, Cho AK, Melega W. Hippocampus norepinephrine, caudate dopamine and 
serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J 
Neurosci. 1995; 15:1308–1317. [PubMed: 7869099] 

Ladenheim B, Krasnova IN, Deng X, Oyler JM, Polettini A, Moran TH, Huestis MA, Cadet JL. 
Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for 
interleukin-6. Mol Pharmacol. 2000; 58:1247–1256. [PubMed: 11093760] 

LaVoie MJ, Hastings TG. Dopamine quinine formation and protein modification associated with the 
striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J 
Neurosci. 1999; 19:1484–1491. [PubMed: 9952424] 

Lesch KP, Wolozin BL, Murphy DL, Reiderer P. Primary structure of the human platelet serotonin 
uptake site: identity with the brain serotonin transporter. J Neurochem. 1993; 60:2319–2322. 
[PubMed: 7684072] 

Leon LR. Cytokine regulation of fever: studies using gene knockout mice. J Appl Physiol. 2002; 
92:2648–2655. [PubMed: 12015385] 

Levi MS, Divine B, Hanig JP, Doerge DR, Vanlandingham MM, George NI, Twaddle NC, Bowyer JF. 
A comparison of methylphenidate-, amphetamine-, and methamphetamine-induced hyperthermia 
and neurotoxicity in male Sprague-Dawley rats during the waking (lights off) cycle. Neurotoxicol 
Teratol. 2012; 34:253–262. [PubMed: 22289608] 

Lin MT, Chandra A, Tsay BL, Chern YF. Hypothalamic and striatal dopamine activation inhibits heat 
production in the rat. Am J Physiol Integr Comp Physiol. 1982; 242:R471–481.

Lin MT, Wu JJ, Tsay BL. Serotonergic mechanisms in the hypothalamus mediate thermoregulatory 
responses in rats. Naunyn Schmied Arch Pharmacol. 1983; 322:271–278.

Loscher W, Witte U, Fredow G, Ganter M, Bickhardt K. Phamacodynamic effects of serotonin (5-HT) 
receptor ligands in pigs: stimulation of 5-HT2 receptors induces malignant hyperthermia. Naunyn 
Schmied Arch Pharmacol. 1990; 341:483–493.

Matsumoto et al. Page 23

Pharmacol Ther. Author manuscript; available in PMC 2016 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Makisumi T, Yoshida K, Watanabe T, Tan N, Murakami N, Morimoto A. Sympatho-adrenal 
involvement in methamphetamine-indced hyperthermia through skeletal muscle hypermetabolism. 
Eur J Pharmacol. 1998; 363:107–112. [PubMed: 9881575] 

Mallick BN, Jha SK, Islam F. Presence of alpha-1 adrenoceptors on thermosensitive neurons in the 
medial preoptico-anterior hypothalamic area in rats. Neuropharmacol. 2002; 42:697–705.

Marinova Z, Ren M, Wendland JR, Leng Y, Liang MH, Yasuda S, Leeds P, Chuang DM. Valproic 
acid induces functional heat-shock protein 70 via Class I histone deacetylase inhibition in cortical 
neurons: a potential role of SP1 acetylation. J Neurochem. 2009; 111:976–987. [PubMed: 
19765194] 

Marshall JF, O’Dell SJ. Methamphetamine influences on brain and behavior: unsafe at any speed? 
Trends Neurosci. 2012; 35:536–545. [PubMed: 22709631] 

Matsumoto RR, Shaikh J, Wilson LL, Vedam S, Coop A. Attenuation of methamphetamine-induced 
effects through the antagonism of sigma (σ) receptors: Evidence from in vivo and in vitro studies. 
Eur Neuropsychopharmacol. 2008; 18:871–881. [PubMed: 18755577] 

Matuszewich L, Yamamoto BK. Long-lasting effects of chronic stress on DOI-induced hyperthermia 
in male rats. Psychopharmacol. 2003; 169:169–175.

Mauer-Spurej E. Circulating serotonin in vertebrates. Cell Mol Life Sci. 2005; 62:1881–1889. 
[PubMed: 16041566] 

McAllen KJ, Schwartz DR. Adverser drug reactions resulting in hyperthermia in the intensive care 
unit. Crit Care Med. 2010; 38:S244–S252. [PubMed: 20502177] 

McLean S, Weber E. Autoradiographic visualization of haloperidol-sensitive sigma receptors in 
guinea-pig brain. Neurosci. 1988; 25:259–269.

Metzger RR, Haughey HM, Wilkins DG, Gibb JW, Hanson GR, Fleckenstein AE. Methamphetamine-
induced rapid decrease in dopamine transporter function: role of dopamine and hyperthermia. J 
Pharmacol Exp Ther. 2000; 295:1077–1085. [PubMed: 11082443] 

Miller DB, O’Callaghan JP. Environment-, drug- and stress-induced alterations in body temperature 
affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp 
Ther. 1994; 270:752–760. [PubMed: 8071868] 

Miller DB, O’Callaghan JP. Elevated environmental temperature and methamphetamine neurotoxicity. 
Environ Res. 2003; 92:48–53. [PubMed: 12706754] 

Morrison SF, Nakamura K. Central neural pathways fro thermoregulation. Front Biosci. 2011; 16:74–
104.

Nakayama T, Eisenman JS, Hardy JD. Single unit activity of anterior hypothalamus during local 
heating. Science. 1961; 134:560–561. [PubMed: 13727681] 

Nguyen EC, McCracken KA, Pouw B, Matsumoto RR. Involvement of sigma receptors in the actions 
of methamphetamine: receptor binding and behavioral studies. Neuropharmacol. 2005; 49:638–
645.

NIDA. Drug-related hospital emergency room visits. NIDA Info Facts. 2011

Numachi Y, Ohara A, Yamashita M, Fukushima S, Kobayashi H, Hata H, Watanabe H, Hall FS, Lesch 
KP, Murphy DL, Uhl GR, Sora I. Methamphetamine-induced hyperthermia and lethal toxicity: 
role of the dopamine and serotonin transporters. Eur J Pharmacol. 2007; 572:120–128. [PubMed: 
17673199] 

Nybo L. Brain temperature and exercise performance. Exp Physiol. 2012; 97:333–339. [PubMed: 
22125311] 

O’Callaghan JP, Miller DB. Neurotoxicity profiles of substituted amphetamines in the C57BL/6J 
mouse. J Pharmacol Exp Ther. 1994; 270:741–751. [PubMed: 8071867] 

O’Callaghan, JP.; Miller, DB. Neurotoxic effects of substituted amphetamines in rats and mice: 
Challenges to the current dogma. In: Massaro, EJ., editor. Handbook of Neurotoxicity. Vol. 2. 
Humana Press; Totowa, NJ: 2002. p. 269-301.

Ossowska G, Nowa G, Kata R, Klenk-Majewska B, Danilczuk Z, Zebrowska-Lupina I. Brain 
monoamine receptors in a chronic unpredictable stress model in rats. J Neural Transm. 2001; 
108:311–319. [PubMed: 11341483] 

Matsumoto et al. Page 24

Pharmacol Ther. Author manuscript; available in PMC 2016 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Park MJ, Lee SK, Lim MA, Chung HS, Cho SI, Jang CG, Lee SM. Effect of alpha-tocopherol and 
deferoxamine on methamphetamine-induced neurotoxicity. Brain Res. 2006; 1109:176–182. 
[PubMed: 16844102] 

Phillips PK, Heath JE. Dependency of surface temperature regulation on body size in terrestrial 
mammals. J Therm Biol. 1995; 20:281–289.

Pubill D, Verdaguer E, Sureda FX, Camins A, Pallas M, Camarasa J, Escubedo E. Carnosine prevents 
methamphetamine-induced gliosis but not dopamine terminal loss in rats. Eur J Pharmacol. 2002; 
448:165–168. [PubMed: 12144937] 

Ray R, Snyder RC, Thomas S, Koller CA, Miller DM. Mithramycin blocks protein binding and 
function of the SV40 early promoter. J Clin Invest. 1989; 83:2003–2007. [PubMed: 2542379] 

Reznikoff GA, Manker S, Rhodes CH, Winokur A, Rainbow TC. Localization and quantification of 
beta-adrenergic receptors in human brain. Neurology. 1986; 36:1067–1073. [PubMed: 3016604] 

Robson MJ, Seminerio MJ, McCurdy CR, Coop A, Matsumoto RR. σ Receptor antagonist attenuation 
of methamphetamine-induced neurotoxicity is correlated to body temperature modulation. 
Pharmacol Rep. 2013; 65:343–349. [PubMed: 23744418] 

Rothman RB, Clark RD, Partilla JS, Baumann MH. (+)-Fenfluramine and its major metabolite, (+)-
norfenfluramine, are potent substrates for norepinephrine transporters. J Pharmacol Exp Ther. 
2003; 305:1191–1199. [PubMed: 12649307] 

Rothman RB, Zolkowska D, Baumann MH. Serotonin (5-HT) transporter ligands affect plasma 5-HT 
in rats. Ann NY Acad Sci. 2008; 1139:268–284. [PubMed: 18991872] 

Rothwell NJ. CNS regulation of thermogenesis. Crit Rev Neurobiol. 1994; 8:1–10. [PubMed: 
8124729] 

Rusyniak DE, Sprague JE. Hyperthermic syndromes induced by toxins. Clin Lab Med. 2006; 26:165–
184. [PubMed: 16567230] 

Salmi P, Ahlenius S. Evidence for functional interactions between 5-HT1A and 5-HT2A receptors in 
rat thermoregulatory mechanisms. Pharmacol Toxicol. 1998; 82:122–127. [PubMed: 9553989] 

Sandoval V, Hanson GR, Fleckenstein AE. Methamphetamine decreases mouse striatal dopamine 
transporter activity: roles of hyperthermia and dopamine. Eur J Pharmacol. 2000; 409:265–271. 
[PubMed: 11108820] 

Schep LJ, Slaughter RJ, Beasley DM. The clinical toxicology of metamfetamine. Clin Toxicol. 2010; 
48:675–694.

Schwartz PJ, Wehr TA, Rosenthal NE, Bartko JJ, Oren DA, Luetke C, Murphy DL. Serotonin and 
thermoregulation. Physiologic and pharmacologic aspects of control revealed by intravenous m-
CPP in normal human subjects. Neuropsychopharmacol. 1995; 13:105–115.

Seminerio MJ, Kaushal N, Shaikh J, Huber JD, Coop A, Matsumoto RR. Sigma (σ) receptor ligand, 
AC927 (N-phenethylpiperidine oxalate), attenuates methamphetamine-induced hyperthermia and 
serotonin damage in mice. Pharmacol Biochem Behav. 2011; 98:12–20. [PubMed: 21130800] 

Seminerio MJ, Hansen R, Kaushal N, Zhang HT, McCurdy CR, Matsumoto RR. The evaluation of 
AZ66, an optimized sigma receptor antagonist, against methamphetamine-induced dopaminergic 
neurotoxicity and memory impairment in mice. Int J Neuropsychopharmacol. 2013; 16:1033–
1044. [PubMed: 22932447] 

Seminerio MJ, Robson MJ, McCurdy CR, Matsumoto RR. Sigma receptor antagonists attenuate acute 
methamphetamine-induced hyperthermia by a mechanism independent of IL-1β mRNA 
expression in the hypothalamus. Eur J Pharmacol. 2012; 691:103–109. [PubMed: 22820108] 

Shin EJ, Dong CX, Nguyen TX, Bing G, Bach JH, Park DH, Nakayama K, Ali SF, Kanthasamy AG, 
Cadet JL, Nabeshima T, Kim HC. PKCdelta inhibition enhances tyrosine hydroxylase 
phosphorylation in mice after methamphetamine treatment. Neurochem Int. 2011; 59:39–50. 
[PubMed: 21672585] 

Shioda K, Nishijima K, Yoshino T, Kato S. Effect of risperidone on acute methamphetamine-induced 
hyperthermia in rats. Drug Alcohol Depend. 2010; 11:241–249. [PubMed: 20541333] 

Skibba JL, Gwartney EA. Liver hyperthermia and oxidative stress: role of iron and aldehyde 
production. Int J Hyperthermia. 1997; 13:215–226. [PubMed: 9147147] 

Matsumoto et al. Page 25

Pharmacol Ther. Author manuscript; available in PMC 2016 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Skibba JL, Powers RH, Stadnicka A, Cullinane DW, Almagro UA, Kalbfleisch JH. Oxidative stress as 
a precursor to the irreversible hepatoceullar injury caused by hyperthermia. Int J Hyperthermia. 
1991; 7:749–761. [PubMed: 1940510] 

Skibba JL, Powers RH, Stadnicka A, Kalbfleisch JH. Lipid peroxidation caused by hyperthermic 
perfusion of rat liver. Biochem Pharmacol. 1990; 40:1411–1414. [PubMed: 2169745] 

Sleiman SF, Langley BC, Basso M, Berlin J, Xia L, Payappilly JB, Kharel MK, Guo H, Marsh JL, 
Thompson LM, Mahishi L, Ahuja P, MacLellan WR, Geschwind DH, Coppola G, Rohr J, Ratan 
RR. Mithramycin is a gene-selective Sp1 inhibitor that identifies a biological intersection 
between cancer and neurodegeneration. J Neurosci. 2011; 31:6858–6870. [PubMed: 21543616] 

Smith DE, Fischer CM. An analysis of 310 cases of acute high-dose methamphetamine toxicity in 
Haight-Ashbury. Clin Toxicol. 1970; 3:117–124. [PubMed: 5520384] 

Sprague JE, Yang X, Sommers J, Gilman TL, Mills EM. Roles of norepinephrine, free fatty acids, 
thyroid status, and skeletal muscle uncoupling protein 3 expression in sympathomimetic-induced 
thermogenesis. J Pharmacol Exp Ther. 2007; 320:274–280. [PubMed: 17012607] 

Suchard JR. Recovery from severe hyperthermia (45 °C) and rhabdomyolysis induced by 
methamphetamine body-stuffing. West J Emerg Med. 2007; 8:93–95. [PubMed: 19561691] 

Tagashira H, Bhuiyan S, Shioda N, Hasegawa H, Kanai H, Fukunaga K. Sigma receptor stimulation 
with fluvoxamine ameliorates transverse aortic constriction-induced myocardial hypertrophy and 
dysfunction in mice. Am J Physiol Heart Circ Physiol. 2010; 299:H1535–H1545. [PubMed: 
20802134] 

Takao K, Nagatani T, Kitamura Y, Kawasaki K, Hayakawa H, Yamawaki S. Chronic forced swim 
stress of rats increases frontal cortical 5-HT2 receptors and the wet-dog shakes they mediate, but 
not frontal cortical beta-adrenoceptors. Eur J Pharmacol. 1995; 294:721–726. [PubMed: 
8750738] 

Tata DA, Raudensky J, Yamamoto BK. Augmentation of methamphetamine-induced toxicity in the rat 
striatum by unpredictable stress: contribution of enhanced hyperthermia. Eur J Neurosci. 2007; 
26:739–748. [PubMed: 17686046] 

Thomas DM, Angoa Perez M, Francescutti-Verbeem DM, Shah MM, Kuhn DM. The role of 
endogenous serotonin in methamphetamine-induced neurotoxicity to dopamine nerve endings of 
the striatum. J Neurochem. 2010; 115:595–605. [PubMed: 20722968] 

Thomas DM, Francescutti-Verbeem DM, Kuhn DM. The newly synthesized pool of dopamine 
determines the severity of methamphetamine-induced neurotoxicity. J Neurochem. 2008; 
105:605–616. [PubMed: 18088364] 

Tsuji T, Asanuma M, Miyazaki I, Miyoshi K, Ogawa N. Reduction of nuclear peroxisome 
proliferation-activated receptor gamma expression in methamphetamine-induced neurotoxicity 
and neuroprotective effects of ibuprofen. Neurochem Res. 2009; 34:764–774. [PubMed: 
18946735] 

Turnipseed SD, Richards JR, Kirk JD, Diercks DB, Anderson EA. Frequency of acute coronary 
syndrome in patients presenting to the emergency department with chest pain after 
methamphetamine use. J Emerg Med. 2003; 24:369–373. [PubMed: 12745036] 

Voronova IP, Naumenko VS, Khramova GM, Kozyreva TV, Popova NK. Central 5-HT3 receptor-
induced hypothermia is associated with reduced metabolic rate and increased heat loss. Neurosci 
Lett. 2011; 504:209–214. [PubMed: 21964386] 

Watts DJ, McCollester L. Methamphetamine-induced myocardial infarction with elevated troponin I. 
Am J Emerg Med. 2006; 24:132–134. [PubMed: 16338525] 

Webb P. The physiology of heat regulation. Am J Physiol Regul Integr Comp Physiol. 1995; 
268:R838–R850.

Wendt D, van Loon LJC, van Marken Lichtenbelt WD. Thermoregulation during exercise in the heat. 
Sports Med. 2007; 37:669–682. [PubMed: 17645370] 

West PL, McKeown NJ, Hendrickson RG. Methamphetamine body stuffers: an observational case 
series. Ann Emerg Med. 2010; 55:190–197. [PubMed: 19819590] 

Xu W, Zhu JPQ, Angulo JA. Induction of striatal pre- and postsynaptic damage by methamphetamine 
requires the dopamine receptors. Synapse. 2005; 58:110–121. [PubMed: 16088948] 

Matsumoto et al. Page 26

Pharmacol Ther. Author manuscript; available in PMC 2016 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yamaguchi T, Kuraishi Y, Minami M, Nakai S, Hirai Y, Satoh M. Methamphetamine-induced 
expression of interleukin-1 beta mRNA in the rat hypothalamus. Neurosci Lett. 1991; 128:90–92. 
[PubMed: 1922954] 

Yu X, Imam SZ, Newport GD, Slikker W Jr, Ali SF. Ibogaine blocked methamphetamine-induced 
hyperthermia and induction of heat shock protein in mice. Brain Res. 1999; 823:213–216. 
[PubMed: 10095030] 

Yubera-Lahoz S, Ayestas MA Jr, Blough BE, Partilla JS, Rothman RB, de la Torre R, Baumann MH. 
Effects of MDMA and related analogs on plasma 5-HT: relevance to 5-HT transporters in blood 
and brain. Eur J Pharmacol. 2012; 674:337–344. [PubMed: 22079770] 

Zhang G, Tao R. Enhanced responsivity of 5-HT2A receptors at warm ambient temperatures is 
responsible for the augmentation of the 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-
induced hyperthermia. Neurosci Lett. 2011; 490:68–71. [PubMed: 21172407] 

Zhang H, Cuevas J. Sigma receptors inhibit high-voltage-activated calcium channels in rat sympathetic 
and parasympathetic neurons. J Neurophysiol. 2002; 87:2867–2879. [PubMed: 12037190] 

Zhang L, Kitaichi K, Fujimoto Y, Nakayama H, Shimizu E, Iyo M, Hashimoto K. Protective effects of 
minocycline on behavioral changes and neurotoxicity in mice after administration of 
methamphetamine. Prog Neuropsychopharmacol Biol Psychiat. 2006; 30:1381–1393.

Zolkowska D, Rothman RB, Baumann MH. Amphetamine analogs increase plasma serotonin: 
implications for cardiac and pulmonary disease. J Pharmacol Exp Ther. 2006; 318:604–610. 
[PubMed: 16644904] 

Matsumoto et al. Page 27

Pharmacol Ther. Author manuscript; available in PMC 2016 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Methamphetamine causes hyperthermia through a variety of mechanisms involving 

numerous systems. Methamphetamine causes neurotransmitter release and increased 

metabolism in the central nervous system (CNS). Additionally, methamphetamine can 

increase heart rate and result in hyperactivity, leading to increased heat production in the 

periphery. Vasoconstriction is another consequence of methamphetamine exposure, which 

results in a decreased ability of the body to rid itself of the increased heat resulting from 

these effects.
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Table 1

Physiological responses to environmental heat vs. methamphetamine.

Exposure to high ambient temperature Exposure to high dose methamphetamine

1) Increase in blood and brain temperature 1) Increase in brain temperature

2) Hypothalamic response:

• Activation of heat sensitive neurons in preoptic area of the 
hypothalamus

• Activation of anterior hypothalamus

2) Hypothalamic response:

• Increase in heat shock protein (HSP) expression

3) Activation of heat loss mechanisms:

• Decrease in metabolic activity

• Decrease in muscle activity

• Increase in blood circulating through skin

• Increase in sweating

3) Activation of heat production mechanisms:

• Vasoconstriction

• Piloerection in animals

4) Activation of heat loss mechanisms:

• Saliva spreading in animals
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